```
AM 1934
low
c. 1
```



``` ©allegr af fitheral Arta Tithraru
THE GIFT OF the Author 378.744

\title{
BOSTON UNIVERSITY
}

GRADUATE SCHOOL
Thesis
INTRODUCTION TO THE SOLUTION OF ORDINARY LINeAR differential equations with CONSTANT COEFFICIENTS by

William Arthur Lowell (B.S. Bates College, 1918)
submitted in partial fulfilment of the requirements for the degree of Master of Arts 1934
```

79.750.80
p7883

```






\section*{TABLE OF CONTENTS}

\section*{Introduction}

Article

\section*{Page}
1. Brief History . . . . . . . . . . . . . . . . 1
2. Importance . . . . . . . . . . . . . . . . . . 1
3. Method of Procedure ••••••••••••• 2

Definitions and Assumptions

5. Linear Differential Equation . . . . . . . . 2
6. Homogeneous - Non-homogeneous Iinear

Differential Equation . . . . . . . . . . . . 3
7. Solution of Differential Equation . . . . . . . . 3
8. Assumptions . . . . . . . . . . . . . . . . 3

Fomogeneous Linear Differential Equation
9. General Theorem . . . . . . . . . . . . . . . 3
10. Constant Coefficients. Ioots of Auxiliary
Equation Real and Distinct . . . . . . . . . 5
11. Roots of Auriliary Equation Complex Imaginary and Distinct •••••••••••• 7
12. Roots of Auxiliary Equation Multiple . . . . . 10 Non-homogeneous Linear Differential Equations 13. General Theorem • . . . . . . . . . . . . . . 16
14. Symbolic operator. . . . . . . . . . . . . 17
15. Operator Mothod for Particular Integral . . . . 19

\title{
 \\ 
}

9102お完。
\(\qquad\)
\(\qquad\)







\(\qquad\)

\(\qquad\)
 を．．．．．．．．．．Jo．．．．

\(\square\)



\(\qquad\)


16. Variation of Parameters . . . . . . . . . . . . 22
17. Undetermined Coefficients ............ 26 Summary and Conclusions . . . . . . . . . . . 34
Bibliography ................... 36

\section*{INTRODUCTION}

\section*{1. Brief History. - The study of Differential}

Equations began very soon after the discovery of Differential and Integral Calculus, to which it forms a natural sequel. In 1676 Newton solved such an equation by means of infinite series but did not publish his results until 1693, the same year that Liebniz encountered them in his work. From then on progress was rapid. Such men as the Bernoulli brothers, Fontaine, Euler, Clairaut, Taylor and Lagrange became interested, and by the beginning of the nineteenth century many important results had been established but the methods developed were artificial, broad comprehensive principles lacking. Fuch's Memoirs (1866-68) gave the theory of Linear Differential Equations its birth, the Lie Theory of Continuous Groups (1884) advanced it and led Picard and Vessibt to develop a theory which is analogous to the Galois theory for algebraic equations.

\section*{2. Importance of Linear Differential Equations. -} The problem of solving equations of this type is constantly met in scientific investigations, particularly in those dealing with the study of motions of various kinds. They are encountered in Algebra, Geometry, Mechanics, Physics, Chemistry, and Astronomy. Many problems in tangency, curvature, envelopes, oscillations of mechanical systems and of electric currents, bending of beams, conduction of heat, diffusion of solvents,

\section*{170工750000 mentis}
























velocity of chemical reactions, and celestial mechanics formulate themselves as linear differential equations of one of two types: - those with constant coefficients which are the more important, or those with variable coefficients. In fact, so great is the preponderance of these equations in Physics alone that the study of them in this field might well be called the study of Linear Differential Equations. The frequency of their occurrence in any one of the above mentioned branches of science \({ }_{n}^{\text {is }}\) sufficient justification for the special attention given them in this paper.
3. Method of Procedure. - The method of reasoning used in developing the subject is largely the inductive type Which, I believe, is consistent with the fact that it is of an introductory nature. Absolute rigor has been sacrificed in some instances for the purpose of simplifying the argument.

\section*{DEFINITIONS AND_ASSUMPTIONS}
4. Differential Equations. - An equation involving derivatives or differentials is a differential equation. If the equation involves a single independent variable, it is an ordinary differential equation; otherwise, it is a partial differential equation.
5. Iinear Differential Equation. - A differential
equation that is of the first degree in the dependent variable and its derivatives is a linear differential equation. The general form of the ordinary linear differential equation is








- Tecag aind mi meaid moviz moímodje






\section*{}



 - Modtampe falfremos?




\[
x_{0} \frac{d^{n} y}{d x^{n}}+x_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots \cdots+x_{n} y=x
\]

Where \(X_{0}, X_{1}, \ldots \ldots X_{n}\) and \(X\) are functions of \(X\) or constants.
6. Homogeneous - Non-homogeneous Iinear Differential

Equation. - A linear differential equation in which the right-hand member is zero is a homogeneous linear differential equation. When the right-hand member is a function of \(x\), the equation is said to be non-homogeneous.

\section*{7. Solution of Differential Bquation. - Any}
functional relationship (not containing derivatives) between the variables which causes a differential equation to reduce to an identity, is a solution or a particular integral of the equation. The meaning of the term "solution" in this theory is somewhat broader than that given it in Algebra. It is extended to include not only implicit algebraic forms such as \(y=\alpha x \sqrt{x^{2}+y^{2}}\), but also symbolic forms such as \(y=\int f(x) d x\) which cannot be expressed without integral signs.
8. Assumptions. - It is assumed in this discussion that every linear differential equation thas a general solution, and that this solution involves \(n\) arbitrary independent constants.

\section*{HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS}
9. General Thoorem. - The general homogeneous linear differential equation is of the form






















(1) \(x_{0} \frac{d^{n} y}{d x^{n}}+x_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+x_{n y}=0\)
where \(X_{0}, X_{1},----X_{n}\) are constants or functions of \(X_{\text {. }}\). If \(y=y_{1}\) is a particular integral of this equation, then
\[
x_{0} \frac{d^{n} y_{1}}{d x^{n}}+x_{1} \frac{d^{n-1} y_{1}}{d x^{n-1}}+\cdots \cdots+x_{n y_{1} \equiv 0} \equiv 0
\]

Multiplying this identity through by an arbitrary constant \(c_{1}\),
\[
\text { (2) } x_{0} c_{1} \frac{d^{n} y_{1}}{d x^{n}}+x_{1} c_{1} \frac{d^{n-1} y_{1}}{d x^{n-1}}+\cdots+x_{n c_{1} y_{1}} \geqq 0
\]

This is the condition that \(c_{1} y_{1} y_{i}\) s a solution of equation (1). Similarly, if \(y=y_{z}\) is another particular integral of (I), \(y=c_{z} y\) is also a solution, and
(3) \(x_{0} c_{2} \frac{d^{n} y_{2}}{d x^{n}}+x_{1} c_{2} \frac{d^{n-1} y_{2}}{d x^{n-1}}+\cdots+x_{n} c_{2} y_{2} \equiv 0\) Adding identities (2) and (3)
\[
x_{0} c_{1} \frac{d^{n} y_{1}}{d x^{n}}+x_{0} c_{2} \frac{d^{n} y_{2}}{d x^{n}}+x_{1} c_{1} \frac{d^{n-1} y_{1}}{d x^{n-1}}+x_{1} c_{2} \frac{d^{n-1} y_{2}}{d x^{n-1}}
\]
\[
+\cdots---+x_{n} c_{2} y_{1}+x_{n} c_{2} y_{2} \equiv 0
\]

This is the condition that \(c_{1} y_{1}+c_{2} y_{2}\) is a solution of equation (1). Similarly, if \(n\) particular integral \(y^{y_{i}} y_{1}, y_{i} y_{2}, \ldots\) \(y_{n}\) of (1) are known.





Bns , HoLtatiog z oets et s Gs?

\[
\begin{aligned}
& 0 \equiv 8_{2} 8_{\pi} X+=80^{2} x+\cdots-\cdots+
\end{aligned}
\]


\[
\text { . mmomsi ara (I) } 20
\]
(4) \(y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}\) is a solution. Since the general solution of a differential equation involves \(n\) independent arbitrary constants, and since \(c_{1}, c_{2}, \ldots-c_{n}\) are such constants, (4) is the general solution of equation (1).

Hence the theorem:- If \(y_{1}, y_{2}, \ldots-y_{n}\) are \(n\) independent particular integrals of a homogeneous linear differential equation of the order \(n\), the function \(c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}=y\) is its general solution.

\section*{10. Constant Coefficients. Roots of Auxiliary} Equation Real and Distinct. - When \(X_{0}, X_{1}, \ldots-X_{n}\) in equation (1) are constants, it may be written
\[
\text { (la) } k_{0} \frac{d^{n} y}{d x^{n}}+k_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+\cdots+k_{n} y=0
\]

Consider the solution of the equation
\[
\text { (5) } \frac{d y}{d x}+x y=0
\]
which is a special case of (la).
Separating the variables
\[
\begin{aligned}
& \frac{d y}{y}+k d x=0 \\
& \log y+k x=a \\
& \log y-\log c=-k x \\
& \frac{y}{c}=e^{-k x} \\
& y=c e^{-k x}
\end{aligned}
\]












\[
0=1, z+\frac{2 z^{3}}{20 b}(\sqrt{2})
\]
* (nL) 20 es.so Latogqe a 3L fiodilw

\[
\begin{aligned}
& 0=2625+\frac{75}{25} \\
& A=\pi 2 L+V .50 I \\
& x-2=0301-2301 \\
& x--_{0}=\ldots \\
& 301-00=3
\end{aligned}
\]

This solution suggests that a particular integral of (la) may be of the form \(y=e^{m x}\). Assuming that this is the case then
\[
\begin{aligned}
& k_{0} m^{n} e^{m x}+k_{1} m^{n-1} e^{m x}+\cdots+\cdots+k_{n} e^{m x} \equiv 0 \\
& e^{m x}\left(k_{0} m^{n}+k_{1} m^{n-1}+\cdots \cdots+k_{n}\right) \equiv 0
\end{aligned}
\]

If \(m\) is a root of
(6) \(k_{0} m^{n}+k_{1} m^{n-1}+\cdots \cdots+k_{n}=0\)
which is called the auxiliary equation, \(y=e^{m x}\) will be a solution. Let \(m_{1}, m_{2}, \ldots--m_{n}\) be distinct real roots of equation (6). By the theorem just proved
\[
\text { (7) } y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\cdots+c_{n} e^{m_{n} x}
\]

Will be the general solution of (la).
The solution of \(3 \frac{d^{2} y}{d x^{2}}+7 \frac{d y}{d x}-6 y=0\) will serve as an illustration of the application of (7). The auxiliary equation is
\[
\begin{aligned}
& 3 m^{2}+7 m-6=0 \\
& (3 m-2)(m+3)=0 \\
& m=\frac{2}{3}, m=-3
\end{aligned}
\]

Substituting in (7)
\[
y=c_{1} e^{\frac{2}{3} x}+c_{2} e^{-3 x}
\]


\[
\text { Zo } 1007 \mathrm{~B} \text { B } 2 \mathrm{EI} 21
\]






\[
\begin{aligned}
& \text { およ moddempo } \\
& 0=3-a r+s= \\
& \left.C=(4+6)(5-4)^{-1}\right) \\
& C-=\frac{\mathrm{n}}{\mathrm{H}}, \mathrm{~B}=\mathrm{m}
\end{aligned}
\]
\[
\begin{aligned}
& x 8-o_{0} 0+x_{8}^{2} \theta_{\theta^{2}}=v
\end{aligned}
\]
\[
\begin{aligned}
& 0 \equiv\left(x^{2!}+\cdots+\cdots+\left\{-\pi_{m_{2}}+\pi_{m_{0} 21}\right)^{2 m_{0}}\right.
\end{aligned}
\]

\section*{11. Roots of Auxiliary Equation Complex Imaginary} end Distinct. - If allie roots of equation (6) are complex imaginary and distinct, they will occur in pairs of the form \(\alpha+\beta_{i}\) and \(\alpha-\beta i\). By the theorem presser on page 5 the solution of (la) will be
\[
\begin{aligned}
\left.y=c_{1} e^{\left(\alpha_{1}\right.}+\beta_{1} i\right) x & c_{2} e^{\left(\alpha_{1}-\beta_{1} i\right) x}+\ldots \\
& +c_{n-1} e^{\left(\alpha_{\frac{n}{2}}+\beta_{\frac{\pi}{2} i}\right) x}+c_{n} e^{\left(\alpha_{\frac{n}{2}}-\beta_{\left.\frac{n}{2} i\right) x}\right.}
\end{aligned}
\]

This can be written
\[
\begin{gathered}
y=c_{1} e^{\alpha} x_{e} \beta_{1} i x \\
c_{n} c_{2} e^{\alpha_{1} x} e^{-\beta_{1} i x}+\ldots \ldots+c_{n-1} e^{\alpha_{\frac{n}{2}} x} e^{\beta_{\frac{n}{2}}^{2} i x}+ \\
(8) y=e^{-\beta_{\frac{m}{2}} i x} \\
\left(c_{1} e^{\beta_{1} i x}+c_{2} e^{-\beta_{1} i x}\right)+\ldots \ldots \ldots \ldots \\
\\
+e^{\alpha_{\frac{n}{2}} x}\left(c_{n-1} e^{\beta_{\frac{\pi}{2}} i x}+c_{n} e^{-\beta_{\frac{n}{2}} i x}\right)
\end{gathered}
\]

From Ruler's Formulas
\[
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{-i \theta}=\cos \theta-i \sin \theta
\end{aligned}
\]

Te may express the exponentials \(e^{\beta_{i x}}\) and \(e^{\beta_{i x}}\) in trigonometric form as follows:-
\[
\begin{aligned}
& e^{i \beta x}=\cos \beta x+i \sin \beta x \\
& e^{-1 \beta x}=\cos \beta x-i \sin \beta x
\end{aligned}
\]





\[
\pi x_{\frac{1}{6}}-0_{0} x_{n 1}
\]
\[
\ldots \ldots+\left(^{\left.\left.x A_{1}-\ldots \theta_{2}+x_{1} \theta_{1} 2\right)^{x} \theta_{\theta}=\mathrm{V}(B)\right)}\right.
\]
a afumson e'rolue mozz
\[
\begin{aligned}
& 8 \mathrm{xt} 3+8200=82
\end{aligned}
\]
\[
\begin{aligned}
& \text {-: ato offoz as a:2o? } \\
& x 0 x+6+2+2000=x+3 \\
& \pi 8 x i a 1-28000=2 \mathrm{ab}-3
\end{aligned}
\]

Substituting these values in equation (8)
\[
\begin{aligned}
y= & e^{\alpha_{1} x}\left(c_{1} \cos \beta_{1} x+c_{1} i \sin \beta_{1} x+c_{2} \cos \beta_{1} x-c_{2} i \sin \beta_{2} x\right) \\
& +\cdots+e^{\alpha_{n}^{2} x}\left(c_{n-1} \cos \beta_{\frac{n}{2}} x+c_{n-1} i \sin \beta_{\frac{n}{2} x}+c_{n} \cos \beta_{\frac{3}{2}} x\right. \\
& -c_{n} i \sin \beta_{\frac{\pi}{2} x} \\
y= & e^{\alpha_{1} x}\left[\left(c_{1}+c_{2}\right) \cos \beta_{1} x+i\left(c_{1}-c_{2}\right) \sin \beta_{1} x\right]+\cdots-\ldots \\
& +e^{\alpha_{\frac{n}{2}} x}\left[\left(c_{n-1}+c_{n}\right) \cos \beta_{\frac{n}{2}} x+i\left(c_{n-1}-c_{n}\right) \sin \beta_{\frac{n}{2}} x\right]
\end{aligned}
\]

If \(c_{1}+c_{2}=A_{1}, i\left(c_{1}-c_{2}\right)=B_{1}, c_{3}+c_{4}=A_{2}, i\left(c_{3}-c_{4}\right)=B_{2}\) and so on,
(9) \(y=e^{\alpha_{1} x}\left(A_{1} \cos \beta_{1} x+B_{1} \sin \beta_{1} x\right)+\) \(+e^{\alpha_{n}^{2} x}\left(A_{\frac{n}{2}} \cos \beta_{\frac{\pi}{2}} x+B_{\frac{\pi}{2}} \sin \beta_{\frac{\pi}{2}} x\right)\)
will be the general solution of (la) in which, if \(A_{1}, A_{2}, \ldots\), \(B_{1}, B_{2}, \ldots \ldots\) are real, \(C_{1}, C_{2}, c_{3}, \ldots \ldots\) must be assumed to be imaginary.

Another convenient form of this solution may be obtained as follows:- Multiply and divide each term of equation by arbitrary constants \(k_{1}, k_{2}, \ldots--k_{\frac{n}{2}}\) so chosen that \(\frac{A_{1}}{k_{1}}=\sin a_{1}, \frac{B_{1}}{k_{1}}=\cos a_{1}, \frac{A_{2}}{k_{2}}=\sin a_{2}, \frac{B_{2}}{E_{2}}=\cos a_{2}\), and so on. Such a selection is possible for, if \(\frac{A_{1}}{k_{1}}=\sin a_{1}\), and \(\frac{B_{1}}{k_{1}}=\cos A_{1}\), then \(A_{1}^{2}+B_{1}^{2}=k_{1}^{2}\) or \(k_{1}=\sqrt{A_{1}^{2}+B_{1}^{2}}\). Since \(\sin ^{2} a_{1}+\cos ^{2} a_{1}=1\), and \(\operatorname{sinc} \theta\)



\[
x_{x} \operatorname{man}+x^{2}-
\]
\(\ldots \ldots+\left[x_{8} \quad \pi 80\left(5^{2}-L_{0} 0\right) 2+x_{2} \quad 200\left(s^{2}+20\right)\right]^{x_{1}} 0=0\)
 , 150 os bara

\[
\left(x_{\frac{1}{2}}-x 12=5+x_{5}(x \operatorname{an} \alpha)^{x} x^{x} \theta+\right.
\]


-vzamizem od





 \(000105 \mathrm{me}, \mathrm{I}=\mathrm{f}^{2} \mathrm{emon}+\mathrm{i}^{5} \mathrm{side}\)
\[
\left(\frac{A_{1}}{\sqrt{A_{1}^{2}+B_{1}^{2}}}\right)^{2}+\left(\frac{B_{1}}{\sqrt{A_{1}^{2}+B_{1}^{2}}}\right)^{2}=1
\]
either one of these numbers may be taken as the sin \(a_{1}\) and the other as cos a \({ }_{1}\). Similarly for

and so on. Equation (9) can now be written
\[
\begin{aligned}
y= & k_{1} e^{\alpha_{1} x}\left(\sin a_{1} \cos \beta_{1} x+\cos a_{1} \sin \beta_{1} x\right) \\
& k_{2} \theta^{\alpha_{2} x}\left(\sin a_{2} \cos \beta_{2} x+\cos a_{2} \sin \rho_{2} x\right)+\cdots \\
& k_{\frac{n}{2}} e^{\alpha_{n} x}\left(\sin a_{\frac{n}{2}} \cos \rho_{\frac{n}{2}} x+\cos a_{\frac{n}{2}} \sin \rho_{\frac{n}{2}} x\right)
\end{aligned}
\]
\[
(10) y=k_{1} e^{\alpha_{1} x} \sin \left(\rho_{1} x+a_{1}\right)+k_{2} e^{\alpha_{2} x} \sin \left(\rho_{2} x+a_{2}\right)+\ldots \ldots
\]
\[
+k_{\frac{n}{2}} e^{\alpha_{n} x} \sin \left(f_{-\frac{n}{2}} x+a_{\frac{n}{2}}\right)
\]

Where \(k_{1}, k_{2}, \ldots \ldots k_{\frac{n}{2}}\) and \(a_{1}, a_{2}, \ldots \ldots a_{\frac{n}{2}}\) are arbitrary constants.

To illustrate the use of formulas (9) and (10) solve
\[
3 \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0
\]

The auxiliary equation is
\[
\begin{aligned}
& 3 m^{2}-2 m+1=0 \\
& m=\frac{2 \pm \sqrt{4-12}}{6}=\frac{1 \pm \sqrt{2}}{3}
\end{aligned}
\]


Substituting in (9)
\[
y=e \frac{x}{3}\left(A_{1} \cos \frac{\sqrt{2}}{3} x+B_{1} \sin \frac{\sqrt{2}}{3}\right)
\]

Substituting in (10)
\[
y=k_{1} e^{\frac{x}{3}} \sin \left(\frac{\sqrt{2}}{3} x+a_{1}\right)
\]
12. Roots of Auxiliary Equation Multiple. - If equation (6) has a double root \(m_{1}\), and if the theorem on page 5 holds in this case, the general solution of (la) will be
\[
\begin{aligned}
& y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+c_{3} e^{m_{3} x}+\ldots \ldots+c_{n} e^{m_{n} x} \\
& y=e^{m_{1} x}\left(c_{1}+c_{2}\right)+c_{3} e^{m_{3} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{aligned}
\]
\(c_{1}+c_{2}\) is equivalent to a single constant, and consequently only \(n-1\) independent arbitrary constants are involved. This is not the most general solution for \(n\) such constants are necessary.

Suppose, that one of the roots \(m_{2}=m_{1}+h\) where \(h\) is a small finite quantity. Then
\[
\text { (11) } y=c_{1} e^{m_{1} x}+c_{2} e^{\left(m_{1}+h\right) x}+c_{3} e^{m_{3} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\]
by the theorem on page 5. Equation (11) can be written
(12) \(y=e^{m_{1} x}\left(c_{1}+c_{2} e^{h x}\right)+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{n} x}\)

Expanding \(e^{h x}\) by the exponential series formula

\(\left(\frac{8}{8} 25+5 * x \frac{5}{8} 000+2\right)_{0}^{2}=v\)

\[
\left(x^{3}+x \overrightarrow{2}\right) 820^{\frac{k}{6}} 0_{2}=v
\]








 エ゙ロささ



Substituting this value in equation (12)
\[
\begin{aligned}
& y=e^{m_{1} x}\left[c_{1}+c_{2}(1+h x\right.\left.\left.+\frac{h^{2} x^{2}}{2} \frac{x^{2}}{}+\frac{h^{3} x^{3}}{3!}+\cdots--\right)\right] \\
&+c_{3} e^{m_{3} x}+\cdots+c_{n} e^{m_{n} x} \\
&\left.(13) y=e^{m_{2} x} A+B x+c_{3} h \frac{h}{2!} x^{2}+c_{2} \frac{h^{2}}{3!} x^{3}+\ldots-\ldots\right) \\
&+c_{3} e^{m_{3} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{aligned}
\]

As the quantities \(c_{1}\) and \(c_{2}\) are arbitrary constants we may choose \(c_{2}=\frac{B}{h}\) where \(B\) is any constant. As \(h\) approaches zero \(c_{2}\) will always equal \(B\) and \(c_{2}\) will become infinitely large. Now if \(c_{1}+c_{2}\) is to be an arbitrary constant \(A\), since \(c_{1}=\) \(A-c_{2}, c_{1}\) must be chosen infinitely large and negative. Let \(h\) approach zero in equation (13) and substitute A for \(c_{1}+c_{2}\) and \(B\) for \(c_{2}\). Then
(14) \(y=e^{m_{1} x}(A+B x)+c_{3} e^{m_{3} x}+\cdots+c_{n} e^{m_{n} x}\)
is the general solution of (la).
Suppose next that three roots \(m_{1}, m_{2}, m_{3}\) of equation (6) are equal. From equation (14) if \(m_{1}=m_{2}\)
\[
\begin{equation*}
y=e^{m_{1} x}(A+B x)+c_{3} e^{m_{3} x}+\cdots+c_{n} e^{m_{n} x} \tag{15}
\end{equation*}
\]


Let \(m_{3}=m_{1}+h\). Then substituting in (15)
\[
\begin{aligned}
& y=e^{m_{1} x}(A+B x)+c_{3} e^{\left(m_{1}+h\right) x}+\ldots+c_{n} e^{m_{n} x} \\
& y=e^{m_{1} x}\left[(A+B x)+c_{3} e^{h x}\right]+c_{4} e^{m_{4} x}+\cdots+c_{n} e^{m_{n} x}
\end{aligned}
\]

Expanding \(e^{h x}\) by the exponential series formula
\[
\begin{align*}
& y=e^{I_{1} x}\left[(A+B x)+c_{3}+c_{3} h x+c_{3} \frac{h^{2} x^{2}}{2!}+c_{3} \frac{h^{3} x^{3}}{3!}+\cdots\right] \\
& +c_{4} e^{m_{4} x}+\cdots+c_{n} e^{n_{n} x} \\
& y=e^{n 1} x\left[\left(A+c_{3}\right)+\left(B+c_{3} h\right) x+c_{3} \frac{h^{2} x^{2}}{2!}+c_{3} \frac{h^{3} x^{3}}{3!}\right.  \tag{16}\\
& +\cdots--]+c_{4} e^{m_{4} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{align*}
\]

As in the preceding case, choose \(c_{3}=\frac{A_{3}}{h^{2}}\) where \(A_{3}\) is any constant. As \(h\) approaches zero \(c_{3}\) will always equal \(A_{3}\) but \(c_{3} h\) and \(c_{3}\) will become infinitely large. If \(B+c_{3} h\) is to be an arbitrary constant \(A_{2}\), since \(B=A_{2}-c_{3} h, B\) must be chosen infinitely large and negative. If \(A+c_{3}\) is to be an arbitrary constant \(A_{1}\), since \(A=A_{1}-c_{3}, \mathbb{A}\) must be chosen infinitely large and negative. Let h approach zero in (16), and substitute \(A_{1}\) for \(\left(A+c_{3}\right)\). \(A_{2}\) for \(B+c_{3} h\), and \(A_{3}\) for \(c_{3} h^{2}\). Then
\[
y=e^{m_{1} x}\left(A_{1}+A_{2} x+A_{3} x^{2}\right)+c_{4} e^{m_{4} x}+\cdots+c_{n} e^{m_{n} x}
\]
\[
\left[--+-\frac{1}{!} e^{2} \div-\frac{5}{!} c^{0}+\pi_{8} 0 \div 8+(x 5 \div 2)\right]_{1}=x_{0}=\mathrm{v}
\]
\[
x_{x^{H}} a_{0} 0 \div \ldots+\cdots \div x_{\Delta}+x_{a_{\Delta} a+}
\]









 RTSAM \(\cdot 5_{5^{2}}\)



By a similar line of reasoning it can be shown that if \(r\) roots of (5) are equal, the general solution of (la) will be
(17) \(y=e^{m_{1} x}\left(A_{1}+A_{2} x+A_{3} x^{2}+\cdots+\cdots+A_{r} x^{x-1}\right)+\)
\[
c_{r+1} e^{m_{r+1} x}+\ldots+c_{n} e^{m_{n} x}
\]

Thus the difference that an \(r\) fold root \(m_{1}\) produces is that the coefficient of the exponential \(e^{m_{1} x}\) is no longer an arbitrary constant, but a polynomial of the \((r-1)^{s t}\) degree of the form
\[
A_{1}+A_{2} x+A_{3} x^{2}+\ldots \ldots+A_{r} x^{r-1}
\]
involving \(r\) arbitrary constants.
As an illustration of the application of (17) consider the solution of
\[
12 \frac{d^{3} y}{d x^{3}}+4 \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-2=0
\]

The auxiliary equation is
\[
\begin{aligned}
& 12 m^{3}+4 m^{2}-5 m-2=0 \\
& m=-\frac{1}{2}, m=-\frac{1}{2}, \quad m=\frac{2}{3}
\end{aligned}
\]

From equation (17)
\[
y=e^{-\frac{1}{2} x}\left(A_{1}+A_{2} x\right)+c_{3} e^{\frac{2}{3} x}
\]


If the multiple root is complex imaginary, its conjugate will also be multiple of the same order. Suppose \(m_{1}\) and \(m_{2}\) of equation (6) are equal and complex imaginary of the form \(\alpha+\beta_{i}\), and let \(m_{3}\) and \(m_{4}\) be the roots that are the conjugates of \(m_{1}\) and \(m_{2}\). These roots then will be of the form \(\alpha-\beta i\). By equation (17)
\[
\begin{aligned}
y=e^{\left(\alpha_{1}+\beta_{1} i\right) x}\left(A_{1}\right. & \left.+A_{2} x\right)+e^{\left(\alpha_{1}-\beta_{1} i\right) x}\left(B_{1}+B_{2} x\right) \\
& +c_{5} e^{m_{5} x}+\cdots \cdots+c_{n} e^{m_{n} x}
\end{aligned}
\]

This expression may be written
\[
\begin{array}{r}
y=e^{\alpha_{1} x} \cdot e^{\rho_{1} x}\left(A_{1}+A_{2} x\right)+e^{\alpha_{1} x} \cdot e^{-\rho_{1} x}\left(B_{1}+B_{2}\right. \\
c_{5} e^{m_{5} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{array}
\]
\((18) y=e^{\alpha}\left[e^{\beta_{1} x}\left(A_{1}+A_{2} x\right)+e^{-\beta_{1} i x}\left(B_{1}+B_{2} x\right)\right]+\)
\[
c_{5} e^{m_{5} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\]

Substituting the trigonometric forms for \(\theta^{\beta_{1} i x}\) and \(e^{-\beta_{1} i x}\) in (18)
\[
\begin{array}{r}
y=e^{\alpha_{1} x}\left[\left(\cos \beta_{1} x+i \sin \beta_{1} x\right)\left(A_{1}+A_{2} x\right)+\left(\cos \beta_{1} x-\right.\right. \\
\\
\left.\left.i \sin \beta_{1} x\right)\left(B_{1}+B_{2} x\right)\right]+c_{5} e^{m_{5} x}+\ldots+c_{n} e^{m_{n} x}
\end{array}
\]
(19) \(y=e^{\alpha_{1} x}\left[\left(A_{1}+B_{1}+A_{2} x+B_{2} x\right) \cos \rho_{1} x+i\left(A_{1}-B_{1}+A_{2} x-B_{2} x\right)\right.\)
\[
\left.\sin \beta_{1} x\right]+c_{5} e^{m_{5} x}+\ldots+c_{n} e^{m_{n} x}
\]







\[
\begin{aligned}
& \text { (た上) }
\end{aligned}
\]

Let \(A_{1}+B_{1}=A_{1}^{\prime}, A_{2}+B_{2}=A_{2}^{\prime}, i\left(A_{1}-B_{1}\right)=A_{1}^{\prime \prime}\),
\(i\left(A_{z}-B_{z}\right)=A_{z}\). . Substituting in (19)
\[
\begin{aligned}
y=e^{\alpha_{1} x}[ & \left.\left(A_{1}^{\prime}+A_{2}^{\prime} x\right) \cos \beta_{1} x+\left(A_{1}{ }^{\prime}+A_{2} x\right) \sin \beta_{1} x\right] \\
& +c_{5} e^{m_{5} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{aligned}
\]

Will be the general solution of (la).
Similarly it can be shown that if a complex imaginary root is r fold, the general solution of (la) will be
(20) \(y=e^{\alpha_{1} x}\left[\left(A_{1}{ }^{\prime}+A_{z^{\prime}} x+A_{3} x^{2}+\ldots \ldots+A_{r}^{\prime} x^{r-1}\right) \cos \beta_{1} x\right.\)
\(\left.+\left(A_{1} \prime \prime+A_{2} n x+A_{3} n x^{2}+\cdots+A_{r} x^{r-1}\right) \sin \beta_{1} x\right]\)
\(+c_{2_{r+1}} e^{m_{2 r+1} x}+\ldots \ldots+c_{n} e^{m_{n} x}\)

Another form of this result may be obtained as follows:writing equation (20) in its expanded form and grouping
(21) \(y=e^{\alpha_{1} x}\left[\left(A_{1}^{\prime} \cos \beta_{1} x+A_{1} \prime \sin \beta_{1} x\right)+x\left(A_{2}^{\prime} \cos \beta_{1} x\right.\right.\)
\[
\begin{aligned}
& \left.\left.+A_{z^{\prime \prime}} \sin \beta_{1} x\right)+\ldots+x^{r-1}\left(A_{r} \cos \beta_{1} x+A_{r} \prime \sin \beta_{1} x\right)\right] \\
& +c_{z r+1} e^{m_{2 r+1} x}+\ldots \ldots+c_{n} e^{m_{n} x}
\end{aligned}
\]

Multiply and divide the first group within the bracket by \(k_{1}\), the second group by \(k_{2}\), and so on, the \(k^{1}\) s so chosen that
\[
\frac{A_{1}^{\prime}}{E_{1}}=\sin a_{1}, \frac{A_{2}^{\prime}}{k_{2}}=\sin a_{2}, \frac{A_{2}^{\prime \prime}}{k_{2}}=\cos a_{2} \text {, and similarly for }
\]
\[
\frac{A_{1}^{\prime \prime}}{h_{1}}=\cos \cdot a_{1}
\]







the other \(A^{\prime} s\) and \(k^{\prime} s\). Substituting in (21)
\[
\text { (22) } \begin{aligned}
y= & e^{\alpha_{1} x}\left[k_{1} \sin \left(\beta_{1} x+\varepsilon_{1}\right)+k_{2} x \sin \left(\beta_{1} x+a_{2}\right)+\ldots \ldots\right. \\
& \left.+k_{r} x^{r-1} \sin \left(\beta_{1} x+a_{r}\right)\right]+c_{2 r+1} e^{m_{2 r+1} x}+\ldots \ldots \\
& +c_{n} e^{m_{n} x}
\end{aligned}
\]

To illustrate the application of (20) and (22) consider the solution of
\[
\frac{d^{4} y}{d x^{4}}+2 \frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+1=0
\]

The auxiliary equation is
\[
\begin{aligned}
& m^{4}+2 m^{3}+3 m^{2}+2 m+1=0 \\
& m=\frac{-1 \pm \sqrt{3} i}{2}, m=\frac{-1 \pm \sqrt{3} 1}{2}
\end{aligned}
\]

From equation (20)
\[
y=e^{-\frac{1}{2} x}\left[\left(A_{1}^{\prime}+A_{2}^{\prime} x\right) \cos \frac{\sqrt{3}}{2} x+\left(A_{1}^{\prime \prime}+A_{2}^{\prime \prime} x\right) \sin \frac{\sqrt{3}}{2} x\right]
\]

From equation (22)
\[
y=e^{-\frac{1}{2} x}\left[k_{1} \sin \left(\frac{\sqrt{3}}{2} x+a_{1}\right)+k_{2} x \sin \left(\frac{\sqrt{3}}{2} x+a_{2}\right)\right]
\]

\section*{NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS} 13. General Theorem. - The general form of the non-homogeneous linear differential equation is
\[
\text { (1) } x_{0} \frac{d^{n} y}{d x^{n}}+x_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+\cdots+x_{n} y=x
\]
(
where \(X_{0}, X_{1}, \ldots \ldots X_{n}\) and \(X\) are functions of \(X\) or constants. When the right hand member of this equation is zero, it has been shown that \(I \equiv y=c_{1} y_{1}+c_{2} y_{2}+\cdots-\infty c_{n} y_{n}\) is the general solution, and for convenience \(Y\) will be referred to as the complementary function of (l). If \(y_{p}\) is a particular integral of (1), then
\[
\text { (2) } X_{0} \frac{d^{n} y_{p}}{d x^{n}}+X_{1} \frac{d^{n-1} y_{p}}{d x^{n-1}}+\cdots+\infty+x_{n} y_{p} \equiv X
\]
and since \(Y\) is the general solution of (1) when the right hand member is zero, then
(3) \(X_{0} \frac{d^{n} Y}{d x^{n}}+X_{1} \frac{d^{n-1} Y}{d x^{n-1}}+\cdots \cdots+X_{n} Y \equiv 0\)

Adding the identities (2) and (3)
\[
\begin{aligned}
& \text { (4) } x_{0} \frac{d^{n} y_{p}}{d x^{n}}+x_{1} \frac{d^{n-1} y p}{d x^{n-1}}+\cdots-\infty+x_{n} y_{p}+x_{0} \frac{d^{n} \frac{y}{d x^{n}}+}{d} \\
& x_{1} \frac{d^{n-1} Y}{d x^{n-1}}+\cdots-\infty+x_{n} Y \equiv X
\end{aligned}
\]

This is the condition that \(Y\) + Ip is a solution of (1), and since the complementary function contains independent arbitrary constants, it is the general solution. Hence the theorem:- The general integral of a non-homogeneous linear differential equation is the sum of its complementary function and any particular integral.
14. Symbolic Operator (Dem). If the coefficients

\(X_{0}, X_{1}, \ldots \ldots X_{n}\) in equation (1) are constants, it can be written
\[
\text { (la) } k_{0} \frac{d^{n} y}{d x^{n}}+k_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots \cdots+k_{n} y=x \text {, }
\]
and if we write \(\frac{d y}{d x}=D y ; \frac{d^{2}}{d x^{2}}=D^{2} y, \cdots-\frac{d^{n} y}{d x^{n}}=D^{n} y\), equation (la) becomes
(2) \(\left(k_{0} D^{n}+k_{1} D^{n-1}+\cdots \cdots+k_{n}\right) y=X\)
in which the polynomial \(k_{0} D^{n}+k_{1} D^{n-1}+\ldots \ldots+k_{n}\) is a rational integral function of the \(n^{t h}\) degree by definition, and represents symbolically the differential operator
\[
k_{0} \frac{d^{n}}{d x^{n}}+k_{1} \frac{d^{n-1}}{d x^{n-1}}+\cdots \cdots+k_{n}
\]

Since any rational function of the \(n^{\text {th }}\) degree with constant coefficients can be written as the product of \(n\) linear factors, some alike, all alike, or all distinct, equation (2) becomes symbolically
\[
k_{0}\left(D-m_{1}\right)\left(D-m_{z}\right) \cdots\left(D-m_{n}\right) y=X
\]

By definition of the operator \(D,(D-m) y\) means \(\frac{d y}{d x}-m y\) and \((D-n) y\) means \(\frac{d y}{d x}-n y\). The product \((D-m)(D-n) y\) means \(\left(\frac{d}{d x}-m\right)\) \(\left(\frac{d y}{d x}-n y\right)\) Which equals \(\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y\). Symbolically
(3) \((D-m)(D-n) y=\left[D^{2}-(m+n) D+m n\right] y\)




 YCKOLLOCTME om0000



\[
\because[\pi n+(0) x+\pi)-80]=n(n-0)(n-\pi)(\square)
\]
\[
\begin{aligned}
& \text { asmores (al) molitampo } \\
& x=v\left(S_{2}+\cdots+\cdots+{ }^{i-\pi} d_{5} x+{ }^{n} C_{0} x\right) \quad(S)
\end{aligned}
\]

That is, the result of operating on \(y\) with ( \(D-n\) ) first and then with \((D-m)\) on the result is the same as operating on \(y\) with \(\left[D^{2}-(m+n) D+m n\right]\). Moreover, owing to the symmetry of \(m\) and \(n\) in the right hand member of (3), we see that the order of the operators on the left is not essential. Hence the symbolic representatives of operators of the type here considered behave like algebraic quantities for multiplication; and furthermore, it is obvious that this conclusion will hold regardless of the number of operators involved.

\section*{15. Operator Method for Particular Integral. -}

Suppose we have an equation of the third order, and that it has been divided through by \(k_{o}\). Symbolically it can be written
(1) \(\left(D-m_{2}\right)\left(D-m_{2}\right)\left(D-m_{3}\right) y=X\)

Let \(\left(D-m_{2}\right)\left(D-m_{3}\right) y=u\), where \(u\) is a new function.
Then \(\left(D-m_{1}\right) u=X\) or \(\frac{d u}{d x}-m_{1} u=X\).
This is a linear equation of the first order and \(e^{-m_{2} x}\) is an integrating factor. Hence
\[
e^{-m_{1} x}\left(\frac{d u}{d x}-m_{2} u\right)=e^{-m_{1} x} x
\]

Integrating
\[
\begin{aligned}
& e^{-m_{1} x} u=\int e^{-m_{2} x} x d x+c \\
& u=e^{m_{1} x} \int e^{-m_{1} x} x d x+c e^{m_{2} x} \quad \text { or } \\
& \left(D-m_{2}\right)\left(D-m_{3}\right) y=e^{m_{1} x} \int e^{-m_{2} x} x d x+c e^{m_{1} x}
\end{aligned}
\]













\[
X=z\left(s^{\pi-d}-\mathbb{C}\right)(s-\mathbb{c})(x-\mathbb{d})(\mathbb{d})
\]




 それさするッタoすが
\[
\begin{aligned}
& 0+2.5 x^{x_{2} I f-}=\pi x^{2}=9 \\
& \% 0
\end{aligned}
\]

Let \(\left(D-m_{3}\right) y=v\). Then
\[
\left(D-m_{2}\right) v=\theta^{m_{1} x} \int e^{-m_{2} x} X d x+c e^{m_{1} x}
\]

This is a linear equation of the first order and \(e^{-m} z^{x}\) is an integrating factor. Therefore
\[
\begin{aligned}
& v e^{-m_{2} x}=\int\left[\theta^{\left(m_{1}-m_{2}\right) x} \int e^{-m_{1} x} x d x+c e^{\left(m_{1}-m_{2}\right) x}\right] d x+c^{\prime} \\
& v=e^{m_{2} x} \int\left[e^{\left(m_{1}-m_{2}\right) x} \int e^{-m_{1} x} x d x+c e^{\left(m_{1}-m_{2}\right) x}\right] d x+c^{\prime} e^{m_{2} x}
\end{aligned}
\]

\[
c^{1} e^{m_{2} x}
\]
\[
\int c e^{\left(m_{1}-m_{2}\right) x} d x=\frac{c}{m_{1}-m_{2}} e^{\left(m_{2}-m_{2}\right) x}
\]

Let \(\frac{c}{m_{1}-m_{2}}=c^{\prime \prime}\). Substituting in (2)
\[
\left(D-m_{3}\right) y=e^{m_{2} x} \int_{e^{\left(m_{1}-m_{2}\right) x} \int_{e^{-m_{1} x}} x d x d x+c^{\prime \prime} e^{m_{1} x}+c^{\prime} e^{m_{2} x} .{ }^{x} .}
\] This is a linear equation of the first order and \(\theta^{-m_{3} x}\) is an integrating factor, so
\[
\begin{aligned}
& y e^{-m_{3} x}=\int {\left[e^{\left(m_{2}-m_{3}\right) x} \int e^{\left(m_{1}-m_{2}\right) x} \int_{e^{-m_{1} x}} x d x d x+c^{\prime \prime} e^{\left(m_{1}-m_{3}\right) x}\right.} \\
&\left.+c^{\prime} e^{\left(m_{3}-m_{3}\right) x}\right] d x+c_{3} \\
& y=e^{m_{3} x} \int e^{\left(m_{2}-m_{3}\right) x} \int e^{\left(m_{1}-m_{2}\right) x} \int_{e^{-m_{1} x} x d x d x d x+\frac{c^{\prime \prime}}{m_{1}-m_{3}} e^{m_{1} x}} \\
&+\frac{c^{\prime}}{m_{2}-m_{3}} e^{m_{2} x}+c_{3} e^{m_{3} x}
\end{aligned}
\]





\[
\text { (S) mb gaidutatadus } \quad \theta_{0}=\frac{-0}{s^{3}-1} \text { tait }
\]








\[
\begin{aligned}
& \mathrm{K}_{8} \text { II }_{510}
\end{aligned}
\]

Let \(\frac{c^{\prime \prime}}{m_{1}-m_{3}}=c_{1}, \frac{c^{\prime}}{m_{2}-m_{3}}=c_{2}\). Then
\[
\begin{gathered}
y=e^{m_{3} x} \int e^{\left(m_{2}-m_{3}\right) x} \int_{e}^{\left(m_{1}-m_{2}\right) x} \int_{e^{-m_{1} x}} x d x d x d x+c_{1} e^{m_{1} x}+ \\
c_{2} e^{m_{2} x}+c_{3} e^{m_{3} x}
\end{gathered}
\]
is the general solution of (1).
Using the same argument it can be seen that for the \(n^{\text {th }}\) order equation, the general solution will be
\[
\begin{aligned}
&(3) y=e^{m_{n} x} \int e^{\left(m_{n-1}-m_{n}\right) x} \int-\cdots-\int_{e^{\left(m_{1}-m_{2}\right) x}} \int_{e^{-m_{1} x}} x(d x)^{n} \\
&+c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\ldots-+c_{n} e^{m_{n} x}
\end{aligned}
\]
in which the first line is the particular integral and the second line the complementary function.

The application of (3) is illustrated by the solution of
\[
\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=e^{x}
\]

The auxiliary equation is
\[
m^{3}-3 m^{2}+2 m=0
\]
which has for its roots
\[
m_{1}=2, m_{2}=1, m_{3}=0
\]

The complementary function is
\[
y=c_{1} e^{2 x}+c_{2} e^{x}+c_{3}
\]

Substituting in (3)
\[
\begin{aligned}
y & =e^{0 x} \int_{e^{(1-0) x}} \int_{e}^{(2-1) x} \int_{e^{-2 x} e^{x} d x d x d x+Y} \\
& =\int e^{x} \int e^{x} \int e^{-x} d x d x d x+y
\end{aligned}
\]
\[
x_{8} 0^{2 \pi}+x_{s} 0^{g} 0
\]





\[
x_{0}=\frac{y b}{x a} s+\frac{y^{3} b}{a} x-\frac{r^{\varepsilon} b}{x^{B}}
\]

\[
U=\dot{c^{I I t}}, l=s^{[I I}, S=x
\]

\[
8^{2}+x_{8} 0+x_{0^{2}}=x
\]
(ए) It 3आLU0さitcouvE
\[
y+\sin +3 x^{2}-0\left(\frac{x}{0}\right)^{x}=
\]
\[
\begin{aligned}
& 0=\pi+5+s-\varepsilon
\end{aligned}
\]
\[
\begin{aligned}
& =\int e^{x} \int e^{x}\left[-e^{-x} d x d x\right]+Y \\
& =-\int e^{x} \int e^{x} \cdot e^{-x} d x d x+Y \\
& =-\int e^{x} \int d x d x+Y \\
& =-\int e^{x} x d x+Y \\
& =-e^{x}(x-1)+Y \quad \text { Pierce - } 402 \\
y & =e^{x}(I-x)+c_{1} e^{2 x}+c_{2} e^{x}+c_{3}
\end{aligned}
\]

In the process of integration the constants can be ignored since they give rise only to the terms of the complementary function.

\section*{16. Variation of Parameters. - This method of} obtaining the particular integral is readily applied, especially if the order of the equation is not high. It consists in considering the constants in the complementary function as undetermined functions of \(x\) such that when it is substituted in the given equation we get \(X\), and not \(z e r o\), as we do when they are constants. Since we have n functions at our disposal and only one condition to impose upon them, we may choose (n-1) other conditions as we please.

Suppose we have a third order equation
(1) \(k_{0} \frac{d^{3} y}{d x^{3}}+k_{1} \frac{d^{2} y}{d x^{2}}+k_{2} \frac{d y}{d x}+k_{3} y=X\)
the auxiliary equation of which has distinct roots. Then the complementary function is
(2) \(I=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+c_{3} e^{m_{3} x}\)
\[
\begin{aligned}
& \left.y+1+x_{0}-x_{0}\right)-= \\
& \left.x+\frac{20+2)^{2}}{2}\right)^{2}-= \\
& Y+z b z_{0}^{x}-=
\end{aligned}
\]
\[
\begin{aligned}
& e^{2}+x_{e_{5}}+65_{2}+(z-1)^{2} 0=\cdots
\end{aligned}
\]

















\section*{Differentiating (2)}
\[
\begin{aligned}
\frac{d y}{d x}=c_{1} m_{1} e^{m_{1} x}+ & c_{2} m_{2} e^{m_{2} x}+c_{3} m_{3} e^{m_{3} x}+e^{m_{1} x} \frac{d c_{1}}{d x}+ \\
& e^{m_{2} x} \frac{d c_{2}}{d x}+e^{m_{3} x} \frac{d c_{3}}{d x}
\end{aligned}
\]

Using one of the conditions at our disposal, let
(3) \(e^{m_{1} x} \frac{d c_{1}}{d x}+e^{m_{2} x} \frac{d c_{2}}{d x}+e^{m_{3} x} \frac{d c_{3}}{d x}=0 \quad\) Then
(4) \(\frac{d y}{d x}=c_{1} m_{1} e^{m_{1} x}+c_{2} m_{2} e^{m_{2} x}+c_{3} m_{3} e^{m_{3} x}\)

Differentiating
\[
\begin{align*}
\frac{d^{2} y}{d x}=c_{1} m_{1} e^{m_{1} x} & +c_{2} m_{2}^{2} e^{m_{2} x}+c_{3} m_{3} e^{m_{3} x}+m_{1} e^{m_{1} x} \frac{d c_{1}}{d x}  \tag{4}\\
& +m_{2} e^{m_{2} x} \frac{d c_{2}}{d x}+m_{3} e^{m_{3} x} \frac{d c_{3}}{d x}
\end{align*}
\]

Using another of the conditions at our disposal, let
(5) \(m_{1} e^{m_{1} x} \frac{d c_{1}}{d x}+m_{2} e^{m_{2} x} \frac{d c_{2}}{d x}+m_{3} e^{m_{3} x} \frac{d c_{3}}{d x}=0\). Then
(6) \(\frac{d^{2} Y}{d x}=c_{1} m_{1}^{2} e^{m_{1} x}+c_{2} m_{2}^{2} e^{m_{2} x}+c_{3} m_{3}^{2} e^{m_{3} x}\)

Differentiating (6)
\[
\text { (7) } \begin{aligned}
\frac{d^{3} Y}{d x}= & c_{1} m_{1}{ }^{3} e^{m_{1} x}+c_{2} m_{2} e^{m_{2} x}+c_{3} m_{3}{ }^{3} e^{m_{3} x}+ \\
& m_{1} e^{2 m_{1} x} \frac{d c_{1}}{d x}+m_{2} e^{2} e^{m_{2} x} \frac{d c_{2}}{d x}+m_{3} e^{m_{3} x} \frac{d c_{3}}{d x}
\end{aligned}
\]



Substituting (2), (4), (6), and (7) in (1) we get
(8) \(k_{0} m_{1}{ }^{2} e^{m_{1} x} \frac{d c_{1}}{d x}+k_{0} m_{2}{ }^{2} e^{m_{2} x} \frac{d c_{2}}{d x}+k_{0} m_{3}{ }^{2} e^{m_{3} x} \frac{d c_{3}}{d x}=X\)

Now (3), (5), and (8) are three linear equations in three unknowns from which \(\frac{d c_{1}}{d x}, \frac{d c_{2}}{d x}\), and \(\frac{d c_{3}}{d x}\) can be found, and \(c_{1}, c_{2}\), and \(c_{3}\) determined by integration. The constants arising from this integration process produce the complementary function again.

It can be seen from this argument that, if an \(n^{\text {th }}\) order equation were gives a system of \(n\) equations in \(n\) unknowns would result, and \(c_{1}, c_{2}, \ldots--c_{n}\) could be determined.

If the roots of the auxiliary equation are repeated or complex imaginary, the change in the form of the complementary function does not affect the number of constants involved, and consequently causes no difference in this process.

As an illustration of this method, let us solve
(9) \(\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=e^{x}\)
the equation used to illustrate the method in section 15. The complementary function is
(10) \(Y=c_{1} \theta^{2 x}+c_{2} \theta^{x}+c_{3}\)

Differentiating
\[
\frac{d y}{d x}=2 c_{1} e^{2 x}+c_{2} e^{x}+e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x}+\frac{d c_{3}}{d x}
\]




 - Mivas roLvomNZ










\[
\varepsilon^{0}+\operatorname{ia}_{0_{0} 0}+\pi S_{0_{1} 0}=Y \cdot(0 I)
\]



Let \(e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x}+\frac{d c_{3}}{d x}=0\). Then
(11) \(\frac{d y}{d x}=2 c_{1} e^{2 x}+c_{2} e^{x}\)

Differentiating this result
\[
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=4 c_{1} e^{2 x}+c_{2} e^{x}+2 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x} . \text { Let } \\
& 2 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{a}}{d-x}=0 \text {. Then } \\
& \text { (12) } \frac{d^{2} y}{d x^{2}}=4 c_{1} e^{2 x}+c_{2} e^{x}
\end{aligned}
\]

Differentiating this, we get
(13) \(\frac{d^{3} y}{d x^{3}}=8 c_{1} e^{2 x}+c_{2} e^{x}+4 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x}\)

Substituting (10), (11), (12), and (13) in (9) we get
(14) \(4 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{z}}{d x}=e^{x}\)

Solving
\[
\left\{\begin{array}{l}
e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x}+\frac{d c_{3}}{d x}=0 \\
2 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{3}}{d x}=0 \\
4 e^{2 x} \frac{d c_{1}}{d x}+e^{x} \frac{d c_{2}}{d x}=e^{x}
\end{array}\right.
\]

\[
\begin{aligned}
c_{1} & =-\frac{1}{2} e^{-x}+c_{1} \\
c_{2} & =-x+c_{2} \\
c_{3} & =\frac{1}{2} e^{x}+c_{3} \\
y & =\left(C_{1}-\frac{1}{2} e^{-x}\right) e^{2 x}+\left(c_{2}-x\right) e^{x}+\left(C_{3}+\frac{1}{2} e^{x}\right) \\
& =C_{1} e^{2 x}-\frac{1}{2} e^{x}+C_{2} e^{x}-x e^{x}+C_{3}+\frac{1}{x} e^{x} \\
& =C_{1} e^{2 x}+\left(C_{3}-x\right) e^{x}+c_{3}
\end{aligned}
\]
result we obtained in section 15 but in slightly different form.

\section*{17. Undetermined Coefficients. - This method for} finding a particular integral, while not applicable in all cases, is simple when it can be used. It applies to all cases in which the right hand member of the equation contains only terms which have a finite number of distinct derivatives. Such terms are \(\theta^{k x}, \sin l x, \cos m x\), and products of these, where \(k, l\), and mare any constants.

The particular integral is found by trial. We are seeking \(y=f(x)\) which when substituted in the given equation will reduce the left hand member to the same function that We have in the right hand member. If \(y\) occurs in the equation, this leads us to choose the terms of the right hand member, each prefixed by an undetermined multiplier, as a first trial. On substituting this value in the given equation other terms arise from the differentiation. Consequently, we select the terms of the right hand member plus the terms arising from its
\[
\begin{aligned}
& 4_{5}+x-9 \frac{5}{5}-=2^{0} \\
& 5^{2}+x-=5^{0} \\
& c^{0}+x_{9} \frac{L}{3}=\varepsilon^{2} \\
& \left(x_{0} \frac{5}{5}+a^{0}\right)+x_{0}(x-50)+250\left(\pi-2 \frac{z}{5}-5\right)=u
\end{aligned}
\]
\[
\begin{aligned}
& \text {, }
\end{aligned}
\]
















differentiation, each prefixed by an undetermined multiplier. Since this quantity is to satisfy the given equation its substitution in it results in an identity. We may then equate the coefficients of like terms to determine the unknown multipliers. This gives a particular integral which when added to the complementary function \(\nabla i e l d s\) the general solution of the given equation.

Illustrative Example.
Solve \(\frac{d^{2} y}{d x^{2}}+y=2 e^{x}+x^{3}-x\)
\(Y=c_{1} \cos x+c_{2} \sin x\)
\(y p=a e^{x}+b x^{3}-c x+d x^{2}-\theta\)
\(\frac{d y \beta}{d x}=a e^{x}+3 b x^{2}-c+2 d x\)
\(\frac{d^{2} y p}{d x^{2}}=a e^{x}+6 b x+2 d\)
\(\frac{d^{2} y p}{d x^{2}}+7 p=2 a e^{x}+b x^{3}+(6 b-c) x+d x^{2}+\) \((2 d-\theta) \equiv 2 e^{x}+x^{3}-x\)
\(a=1\)
\(b=1\)
\(6 b-c=-1\)
\(c=7\)
\(d=0\)





 - roldawne movis ont So noltulos

\[
z-z+z_{0}^{2} s=v+\frac{7}{5} \frac{5}{50} \quad 0 \% 102
\]
\[
\pi \text { aic } \varepsilon^{2}+\pi \operatorname{a00} f^{0}=Y
\]
\[
2-s_{x S}+x 0-s^{s} x \sigma+x_{s B}=4 v
\]
\[
x b s+0-30 \varepsilon+z_{\theta 0}=\frac{x D}{2 b}
\]
\[
b S+70 \partial+x_{9, B}=\frac{\Delta z^{2} b}{z B}
\]
\[
+{ }^{s} x b+z(0-d \partial)+e^{2} x 0+{ }_{33} s=40+\frac{4 y^{s} 5}{x b}
\]
\[
x-x+x_{0} S \equiv(\theta-b S)
\]
\[
\begin{array}{r}
f=a \\
\{=\delta \\
\dot{f}=0-\delta \quad \partial \\
T=0 \\
0
\end{array} \quad=5
\]
\[
\begin{aligned}
& 2 d-e=0 \\
& e=0
\end{aligned}
\]

Substituting these values in \(y p\) and adding this to the complementary function
\[
y=c_{1} \cos x+c_{2} \sin x+e^{x}+x^{3}-7 x
\]

If \(y\) is lacking, set \(\mathbb{X}\) equal to the lowest ordered derivative occurring in the equation and integrate to obtain \(y=f(x)\), then proceed as when \(y\) is present.

\section*{Illustration.}

Solve \(\frac{d^{2} y}{d x_{2}}+\frac{d y}{d x}=x^{2}+\cos x\)
\[
Y=c_{1}+c_{2} e^{-\pi}
\]
\[
\frac{d y}{d x}=x^{2}+\cos x
\]
\[
y=\frac{x^{3}}{3}+\sin x+c_{3}
\]
\[
y p=a x^{3}+b x^{2}+c x+d \cos x+e \sin x+c{ }_{3}
\]
\[
\frac{d y p}{d x}=3 a x^{2}+2 b x+c-d \sin x+e \cos x
\]
\[
\frac{d^{2} y p}{d x^{2}}=6 a x+2 b-d \cos x-e \sin x
\]
\[
\frac{d^{2} y p}{d x^{2}}+\frac{d y p}{d x}=3 a x^{2}+(6 a+2 b) x+(2 b+c)+
\]
\[
(e-d) \cos x-(e+d) \sin x \equiv x^{2}+\cos x
\]
\[
\begin{array}{r}
0=\theta-b S \\
0=\theta
\end{array}
\]

\[
\text { Borebzo trowof ontt of Lospo } \lambda \text { fos iszisioad ef v } 1 I
\]



\[
\varepsilon^{0}+x \times 150 \div x 200 b+x 0+{ }^{s} x 0 \div 8 \times 2=4 V
\]
\[
+(0+d s) \div x(c s+s \partial)+s x a z=-2 b+\frac{\Delta b}{s}+\frac{a}{a b}
\]
\[
200+53381120(5+5)-3200(b-9)
\]
\[
\begin{aligned}
& \pi-\mathrm{O}_{\mathrm{S}^{2}}+2 \mathrm{~F} \\
& =800+E=\frac{\mathrm{K}}{\pi} \\
& \varepsilon^{0}+3 \mathrm{xab}+\frac{\varepsilon}{\varepsilon}=0
\end{aligned}
\]
\[
\begin{aligned}
& x \Gamma-{ }^{8} z+\pi_{0}+Z+10 s^{2}+z 000 \pm 2=V
\end{aligned}
\]
\[
\begin{aligned}
& a=\frac{1}{3} \\
& 6 a+e b=0 \\
& b=-1 \\
& 2 b+c=0 \\
& c=2 \\
& e-\frac{d=1}{-e-d=0} \\
& d=-\frac{1}{2} \\
& e=\frac{1}{2}
\end{aligned}
\]

Substituting these values in \(y p\) and adding to \(Y\)
\[
y=c_{1}+c_{2} e^{-x}+\frac{1}{3} x^{3}-x^{2}+2 x-\frac{1}{2} \cos x+\frac{1}{2} \sin x
\]

If \(u\) is a term of the complementary function and also of the right hand member of
(1) \(k_{0} \frac{d^{n} y}{d x^{n}}+k_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots \cdots+k_{n} y=x\).
the method will fail, for the substitution of ur any of its derivatives for \(y\) in it will not give rise to u. From Theory of Equations we know that if \(m\) is an \(r^{\text {th }}\) order root of \(a\) given rational integral equation, then it is an \((r-1)^{\text {th }}\) order root of its first derivative, \((r-2)^{\text {th }}\) order root of its second derivative and so on to its \((r-1)^{\text {th }}\) derivative. If \(m\) is a simple root of the auxiliary equation
\[
\begin{array}{r}
\frac{I}{f}=s \\
0=\sigma S+a d \\
1-=0 \\
0=0+d S \\
S=0 \\
I=B-0 \\
0=B-0- \\
\frac{1}{S}-=\Delta \\
\frac{L}{S}=0
\end{array}
\]



Io zodmon band this ott 20







\[
k_{0} m^{n}+k_{1} m^{n-1}+\cdots \cdots+k_{n}=0
\]
it will not be a root of its first derivative. This amounts to saying that if \(u\), due to \(m\), is \(n_{n}\) particular integral of
(2) \(k_{0} \frac{d^{n} V}{d x^{n}}+k_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots \cdots+k_{n} y=0\),
it is not a particular integral of its first derivative. Now if we are to keep u in the discussion, we must use some form of it which on substitution in (1) will give rise to it. This suggests the substitution of \(x\) for \(y\) in (I). This results in
\[
\begin{aligned}
k_{0} x \frac{d^{n} u}{d x^{n}} & +k_{0} n \frac{d^{n-1} u}{d x^{n-1}}+k_{1} x \frac{d^{n-1} u}{d x^{n-1}}+k_{1}(n-1) \frac{d^{n-2} u}{d x^{n-2}} \\
& +\ldots+\cdots+k_{n-1} x \frac{d u}{d x}+k_{n-1} u+k_{n} x u=x
\end{aligned}
\]

Grouping
\[
\begin{aligned}
& x\left(k_{0} \frac{d^{n} u}{d x^{n}}+k_{1} \frac{d^{n-1} u}{d x^{n-1}}+\cdots+\cdots+k_{n} u\right)+ \\
& \quad\left(k_{0} n \frac{d^{n-1} u}{d x^{n-1}}+k_{1}(n-1) \frac{d^{n-2} u}{d x^{n-2}}+\ldots+\infty+k_{n-1} u\right)=x
\end{aligned}
\]

The first parenthesis vanishes but the second, which involves the derivative of (2), does not. Hence we have u and terms arising from it by differentiation and nothing more.

Similarly if \(u\) is due to an fold root, then it is a particular integral of (2) and its first (r-l) derivatives. Hence \(x^{r} u\) is the form we would select in place of \(u_{0}\)
\[
0=n^{2}+\cdots--++\sqrt{x} a_{2} x+a_{a_{0}} 2
\]






assicrioge







To illustrate this principle for a simple root of the auxiliary equation let us solve
\(\frac{d^{2} y}{d x^{2}}-y=e^{x}\)
\(Y=c_{1} \theta^{x}+c_{2} e^{-x}\)
\(y p=A x e^{x}+B e^{x}\)
\(\frac{d y p}{d x}=A x e^{x}+A e^{x}+B e^{x}\)
\(\frac{d^{2} y p}{d x^{2}}=A x e^{x}+2 A e^{x}+B e^{x}\)
\(\frac{d^{2} y p}{d x^{2}}-y p=2 A e^{x} \equiv e^{x}\)
\(A=\frac{1}{2}\)
\(y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2} x e^{x}\)

For an illustration of a multiple root let us solve
\(\frac{d^{3} x}{d x^{3}}-3 \frac{d y}{d x}-2 y=e^{-x}\)
\(Y=c_{1} e^{-X}+c_{2} x e^{-x}+c_{3} e^{2 x}\)
\(y_{\beta}=A x^{2} e^{-x}+B x e^{-x}+C e^{-x}\)
\(\frac{d y p}{d x}=-A x^{2} e^{-x}+(2 A-B) x e^{-x}+(B-C) e^{-x}\)
\(\frac{d^{2} y p}{d x^{2}}=A x^{2} e^{-x}-(4 A-B) x e^{-x}+(2 A-2 B+C) e^{-x}\)
\[
\begin{aligned}
& z_{9}=c-\frac{y^{5} \cdot b}{z b} \\
& x_{5=3}+3+x_{5}=14 \\
& \tau_{9 E}+\pi_{9 z \lambda}= \\
& x_{01}+x_{92} S+7_{020}=\frac{8 \pi b}{x b} \\
& x_{0 Z}+x_{a d} S+x_{0 \leq A}=\Delta Z^{3} \frac{b}{x b} \\
& \mathrm{~F}_{\theta} \mathrm{F} \mathrm{~F}_{9}-S=\mathrm{N}-\frac{\mathrm{V}}{\mathrm{~S}} \mathrm{~S} \\
& \frac{5}{5}=2 \\
& \pi_{0} \frac{1}{2}+x_{0}-_{00}+x_{20}=8
\end{aligned}
\]

\[
\begin{aligned}
& z-2=8 S-\frac{82}{x 5} 8-\frac{\pi^{C}}{35}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d^{3} y p}{d x^{3}}=-A x^{2} e^{-x}+(6 A-B) x e^{-x}-(6 A-3 B+C) e^{-x} \\
& \frac{d^{3} y p}{d x^{3}}-3 \frac{d y p}{d x}-2 y=(6 A-B-2 \beta-6 A+3 B) x e^{-x}
\end{aligned}
\]
\[
-(6 A-36+0+37-36+26) e^{-x} \equiv e^{-x}
\]
\[
A=-\frac{1}{6}
\]
\[
y=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} e^{2 x}-\frac{1}{6} x^{2} e^{-x}
\]

This method will fail again if a term of the form \(x^{t} u\), where \(u\) is a term of the complementary function, occurs in the right hand member of the given equation. A modification similar to the one used in the preceding discussion applies here. To simplify the argument suppose that we have a third order equation
\[
\text { (1) } k_{0} \frac{d^{3} y}{d x^{3}}+k_{1} \frac{d^{2} y}{d x}+k_{2} \frac{d y}{d x}+k_{3} y=x
\]
and that \(u\) is due to a simple root of its auxiliary equation. The previous discussion leads us to substitute \(x^{t+1} u\) for \(y\) in (1). Substituting and grouping we get
\[
\begin{aligned}
& x^{t+1}\left[k_{0} \frac{d^{3} u}{d x}+k_{1} \frac{d^{2} u}{d x^{2}}+k_{3} \frac{d u}{d x}+k_{3} u\right]+ \\
& (t+1) x^{t}\left[3 k_{0} \frac{d^{2} u}{d x^{2}}+2 k_{1} \frac{d u}{d x}+k_{2} u\right]+ \\
& (t+1) t x^{t-1}\left[3 k_{0} \frac{d u}{d x}+k_{1} u\right]+(t+1) t(t-1) x^{t-2}\left[k_{0} u\right]=x
\end{aligned}
\]











The first group will vanish, but the others will not, and hence \(x^{t} u\) and terms arising from it by differentiation result, and no more.

It can be readily seen that, if an \(n^{\text {th }}\) order equation were given, a similar result would be obtained.

If \(u\) is due to double root of the auxiliary equation of (1), the substitution of \(x^{t+2} u\) for \(y\) is suggested by the preceding multiple root discussion. Substituting and grouping we get
\[
\begin{aligned}
& x^{t+2}\left[k_{0} \frac{d^{3} u}{d x^{3}}+k_{1} \frac{d^{2} \frac{u}{2}}{d x^{2}}+k_{2} \frac{d u}{d x}+k_{3} u\right]+ \\
&(t+2) x^{t+1}\left[3 k_{0} \frac{d^{2} u}{\left.d x^{\frac{u}{2}}+2 k_{1} \frac{d u}{d x}+k_{2} u\right]+}\right. \\
&(t+2)(t+1) x^{t}\left[k_{0} \frac{d u}{d x}+k_{1} u\right]+\left[(t+2)(t+1) t x^{t-1} u\right]=x
\end{aligned}
\]

The first two groups vanish, but the others do not. Hence \(x^{t} u\) and terms arising from it by differentiation result, and no more.

Similarly, if we have an \(n^{t h}\) order equation and if \(u\) is due to an \(r\) fold root, the substitution of \(x^{t+r} u\) for \(y\) will give rise to \(x^{t} u\) and terms arising from it by differentiation, and none other.

As an illustration let us solve
\[
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} e^{x}
\]


- TTOE OA Bra:






 - \(5=0 \mathrm{FB}\) on



\[
z_{0}^{s} z=\frac{z}{2}+\frac{z b}{z b} s-\frac{Z b}{z b}
\]
\[
\begin{aligned}
& Y=c_{1} e^{X}+c_{2} x e^{x} \\
& y_{p}=a x^{4} e^{x}+b x^{3} e^{x}+c x^{2} e^{x} \\
& =\left(a x^{4}+b x^{3}+c x^{2}\right) e^{x} \\
& \frac{d y p}{d x}=\left(a x^{4}+b x^{3}+c x^{2}\right) e^{x}+\left(4 a x^{3}+3 b x^{2}+2 c x\right) e^{x} \\
& \frac{d^{2} y b}{d x^{2}}=\left(a x^{4}+b x^{3}+c x^{2}\right) e^{x}+2\left(4 a x^{3}+3 b x^{2}+2 c x\right) e^{x} \\
& +\left(12 a x^{2}+6 b x+2 c\right) e^{x} \\
& \frac{d^{2} y p}{d x^{2}}-2 \frac{d y p}{d x}+y p=12 a x^{2} e^{x}+6 b x e^{x}+2 c e^{x} \equiv x^{2} e^{x} \\
& 12 a=1 \quad b=0 \\
& a=\frac{1}{12} \quad c=0 \\
& y=c_{1} e^{x}+c_{2} x e^{x}+\frac{1}{12} x^{4} e^{x}
\end{aligned}
\]

Summary and Conclusions. - The problem of solving linear differential equations resolves itself into two parts, finding a particular integral and the complementary function. The finding of the complementary function when the equation has constant coefficients depends wholly upon the solution of an auxiliary equation which is a rational integral function involving a single variable. This solution may become involved if the order of the given equation is high, but otherwise no difficulty is encountered. The form of the
\[
\begin{aligned}
& x_{9 x_{5}} 0+x_{e_{2}}=Y
\end{aligned}
\]
\[
\begin{aligned}
& x_{0}(x+8 \div 80 \div 3)=
\end{aligned}
\]
\[
\begin{aligned}
& { }^{2}=\left(0 \mathrm{~S}+x 02+\mathrm{S}^{3} \mathrm{xa} \operatorname{SI}\right) \div
\end{aligned}
\]
\[
\begin{aligned}
& 0=d \quad I=a S S \\
& 0=0 \quad-\frac{I}{5}=3 \\
& x_{2}^{2} z \frac{1}{3}+x_{0} 0+x_{2} 0+x_{1} 0=V
\end{aligned}
\]









complementary function is exponential or trigonometric according as the roots of the auxiliary equation are real or complex imaginary.

The finding of the particular integral when the equation has constant coefficients may be accomplished by Variation of Parameters, Differential Operator Method, or Undetermined Coefficients. The first two methods have the advantage of absolute generality, but, because they involve integrations, may become laborious when the order of the equation is high. The last method, while not perfectly general, applies in many cases and, as a rule, is to be preferred to the others whenever it can be used because it involves only differentiations and the solution of simultaneous linear algebraic equations. This work also may become long if the order of the equation is high, but usually it is no longer than the other methods, if as long.

















\section*{BIBLIOGRAPHY}

Boole, George. "A Treatise on Differential Equations." Fourth Edition. London: Macmillan and Company, 1877. pp. 195-197.

The solution of homogeneous equations when the auxiliary equation has multiple roots.

Cohen, Abraham. "An Elementary Treatise on Differential Equations." Boston, New York, Chicago: D. C. Heath and Company. pp. 96-117.

Ezcellent treatment of the solution of non-homogeneous equations.

Fry, Thornton C. "Elementary Differential Equations."
New York: D. Van Nostrand Company, Inc., 1929.
Definitions. pp. 1-4. Importance. p. 146.
Kells, Lyman M. "Elementary Differential Equations." First Edition. New York and London: McGraw-Hill Book Company, 1932.

The solution of homogeneous equations when the auxiliary equation has distinct roots. pp. 69-70.

Pierpont, James P. MHistory of Mathematics in the Nineteenth Century," Congress of Arts and Science, Vol. I. Eistorical Introduction. pp. 478-479.```

